## **Exercise**

## Substitution reaction in semi-batch reactor (RC1)

A reaction following the equation  $A+B\to P$  is to be performed as semi-batch in a 4 m³ reactor. The initial charge is 2000 kg of a solution of A at a concentration of 3 mol·kg<sup>-1</sup>. This solution is heated to 80°C, the intended reaction temperature. Then 1000 kg of reactant B (concentration 7.5 mol·kg<sup>-1</sup>) are added at a constant rate. The solvent is xylene with a boiling point of Tb = 140 °C.

This reaction was studied in a reaction calorimeter with a charge of 1.5 kg of final reaction mass (scale 1/2000). The addition was performed in four hours. During the experiment the specific heat capacity of the reaction mixture was measured:

 $C'_P = 1700 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ . The density is 1000 kgm<sup>-3</sup>.

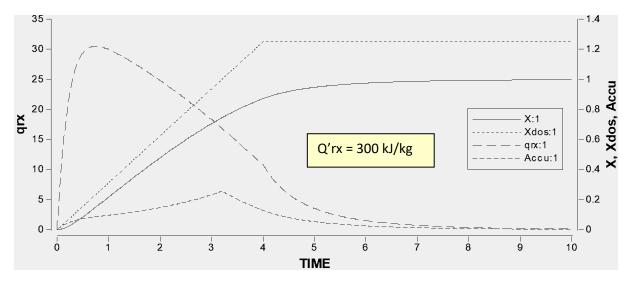



Figure 1: Reaction calorimetry experiment: qrx in W, time in hours. Xdos is the added fraction with reference to stoichiometry, X the conversion and Accu the accumulation.

The reactor characteristics are summarized in Table 1.

Table 1: Characteristics of industrial reactor

| Nominal volume                     | 4m³                                    |
|------------------------------------|----------------------------------------|
| Heat exchange area before addition | 4,8 m <sup>2</sup>                     |
| Heat exchange area after addition  | 6,6 m <sup>2</sup>                     |
| Overall heat transfer coefficient  | 200 W·m <sup>-2</sup> ·K <sup>-1</sup> |
| Minimal cooling medium temperature | +5 °C                                  |

## Questions

Is the cooling capacity at industrial scale sufficient? Calculate MTSR.

What is the criticality class? (Here the thermal stability results from DSC experiments must be taken into account).